skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hirsch, Mare"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding how professionals use digital fabrication in production workflows is critical for future research in digital fabrication technologies. We interviewed thirteen professionals who use digital fabrication for the low-volume manufacturing of commercial products. From these interviews, we describe the workflows used for nine products created with a variety of materials and manufacturing methods. We show how digital fabrication professionals use software development to support physical production, how they rely on multiple partial representations in development, how they develop manufacturing processes, and how machine control is its own design space. We build from these findings to argue that future digital fabrication systems should support the exploration of material and machine behavior alongside geometry, that simulation is insufficient for understanding the design space, and that material constraints and resource management are meaningful design dimensions to support. By observing how professionals learn, we suggest ways digital fabrication systems can scaffold the mastery of new fabrication techniques. 
    more » « less
  2. Abstract Soil carbon flux rates are a crucial metric of carbon cycling that contribute to calculating an ecosystem's carbon budget, and thus whether it is a source or sink of atmospheric carbon dioxide. However, soil carbon flux datasets are frequently low‐resolution across either space or time, limiting our abilities to identify small‐scale ecological contexts that influence soil carbon dynamics. Existing datasets are distributed unevenly, with some soil carbon‐rich regions (like tropical grasslands) significantly understudied. We developed an autonomous, inexpensive, do‐it‐yourself (DIY) soil carbon flux chamber (a “fluxbot”) and data processing software. We deployed a distributed array of 12 fluxbots in a long‐term experiment in a central Kenyan savanna where it has been logistically impossible to collect high‐resolution soil carbon flux data. With this array we collected over 10,000 individual flux estimates over almost two months, spanning the end of a dry season and the start of a wet season. With our successful deployment in situ, we demonstrate the potential for low‐cost, autonomous, DIY sensors in improving resolution of soil carbon flux datasets (particularly in under‐studied or logistically challenging systems). If implemented widely, such an improvement in data collection capacities could improve our understanding of ecological and climatic drivers of soil carbon flux dynamics on the local to global scale. 
    more » « less